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EXACT SOLUTIONS OF A NAVIER-STOKES
EQUATION IN THE FORM OF POLYNOMIALS

S. K. Betyaev UDC 532.526.2

Exact polynomial solutions of a Navier—Stokes equation that describe flow of a Newtonian incompressible
fluid are classified. Four classes of such solutions are recognized: parametric, time, and coordinate solutions
and polynomials in inverse powers of the Reynolds number. The procedure of finding the exact binomial so-
lutions is discussed. An example of nonseparating flow about a circle is given.
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Introduction. The term "exact solution" has no unified definition. We can single out the notion of the "exact
solution in closed form," i.e., the solution obtained without numerical methods, when we are able to get rid of inte-
grals and derivatives in the initial differential, integral, or integro-differential equations.

It is expedient to subdivide all possible solutions into determinate and stochastic ones and those determinate
into stable and unstable solutions. A stable determinate solution can, in principle, be obtained with numerical methods
and be identified with the exact solution in a broad sense. Another approach is in subdividing mathematical models
into correct, incorrect, and conventionally correct. The solution of a correct model can also be obtained using numeri-
cal methods and be identified with the exact solution in a broad sense.

The notion "exact solution" itself is not universally accepted in science. It has been replaced by the notion
"integrability of a system of equations” [1], which intuitively corresponds to the notion of a regular behavior of the
solution (of a laminar flow in hydrodynamics). There is no standard algorithm enabling us to obtain all exact solutions
of a system of differential equations; moreover, solutions expressed by elementary functions are absent for most prob-
lems. Three methods of finding the exact solutions are most commonly use.

1. Search for the First, Second, and More General Integrals of a System. A system is assumed to be totally
integrable if all its integrals have been found [1].

2. Symmetry Analysis. Its sources have been presented in the fundamental works of Sophus Lie and his disci-
ples. It is precisely Lie who was first to propose the method of diminishing the number of independent variables using
a group-theoretical analysis [2]. A group-theoretical classification of the exact solutions of a Navier—Stokes equation
has been given in [3]. It has been established that the basic group of continuous transformations of this equation is
infinite. The Lie algebra and its basis have been found. It has been shown that a Navier—Stokes equation allows a
Galilean group, as all classical mathematical models of the Newtonian mechanics do.

3. Qualitative (Topological) Integration, i.e., finding the trajectory field of a system of equations. Such an ap-
proach involves a local analysis of the solution in the vicinity of singular elements and numerical solution of the prob-
lem beyond these vicinities [4].

The current attitude toward the exact solutions is dual. On the one hand, every exact solution describes the
exact properties of flow. On the other, every exact solution, just as every integrable system of equations, does not de-
scribe the turbulent regime of flow.

Although the term "exact solution" has yet to become universally accepted, the solution in the form of a con-
vergent series or polynomial is always assumed to be exact. It satisfies the sought system of equations with all its
terms being preserved. It is well known that series of special functions, e.g., hypergeometric ones, are broken, becom-
ing polynomials, with a certain selection of the parameters. Most existing exact solutions of a Navier—Stokes equation
are polynomials [5-9]. The first nontrivial exact solutions of ideal-gas equations in the form of polynomials were pro-
posed by Euler [7].
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Essence of the Method. The proposed method is used for finding the exact solutions of a Navier—Stokes
equation which, for a Newtonian incompressible fluid, has the form

Ju

at+(uV)u+Vp=VAu, Vu=0, M

where the fluid density is equal to unity.

The solution method involves the expansion of the sought functions in parametric, time, or coordinate polyno-
mials. The terms of the polynomials can be represented in closed form and in the form of a convergent series and be
determined from a system of ordinary differential equations or a system of linear partial equations. Since the number
of equations necessary for computing the coefficients of such a polynomial and the overdetermination of the problem
dramatically grow with the number of its terms, we are led to restrict ourselves to the binomial expansion of velocity.
The problem’s overdetermination diminishes, since the expansion for pressure is trinomial. The idea of using such ex-
pansion, which is based on the fact that pressure appears linearly in (1), has been used, e.g., in [10], for seeking the
exact solution in the form of the coordinate power expansion of a polar angle.

Let us elucidate the essence of the method with the example of the expansion

2 2
u=u;+0u,, p=p;+0p,+G p3. (@)

The parameter ¢ to be determined in the exact solution of (2) plays the role of an arbitrary constant not appearing in
uj, w, py, p, and p3.

Substituting (2) into Eq. (1), we recognize three groups of terms: those of the order of O(1), O(G), and 0(02).
Setting each of them equal to zero, we obtain three systems of equations: Euler, Navier—Stokes, and constraint equa-
tions. Such an operation yields 11 equations for 9 unknowns in the three-dimensional case (determinacy deficit equal
to 11 -9 = 2) and 8 equations for 7 unknown functions in the two-dimensional case (determinacy deficit equal to
8§-7=1).

The expansion (2) implies a superposition of viscous and nonviscous flows. The constraint equations deter-
mine compatibility conditions under which such a (nonlinear) superposition is possible. The first terms (u; and p;) of
the polynomial (2) satisfy unsteady Navier-Stokes equations, and the terms that follow (u, and p3) satisfy steady-state
Euler equations. The constraint equation has the form

Ju
8—2 + (V) uy + (1,V) u; + Vp, = VAu, . 3)
t
The above three systems of equations cannot be analyzed comprehensively. Therefore, in this work, we con-
sider just two-dimensional particular cases demonstrating the correctness of the method. Using a particular example, we
show that a solution exists. Let us consider two plane flows with velocity components u# and v:

Jdv
D ux, y, 1) = —xa—yl+u0(y, 1), where uy(y, 1) and v(y, 7) are arbitrary functions of their arguments.

(2) uy(x, y, 1) = ay and v, = p3 = 0.
From (3), we find

du, du; dp, ap,
—+avitay—+—=0, —=0
a T T dy
Hence we infer that
v, ) Y
-~ = t s s Vs 1) = .
y P vi=b(1), py(x,y,1)=abx

Consequently, we have
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vi==b@®+yc(). 4

The solution (u,, p53) satisfies the steady-state Euler equation. It only remains for us to check whether the so-
lution (uw;, p) satisfies unsteady Navier—Stokes equations. From (1), we find

2
d d d 9 o d vy 9 dv
I OO BNCA U DO B CAY -
ot ox dy ox ay ot dy dy dy

From the second equation of (5), we infer that
V1
pL=V J dy +A(x, 1),

where the function A(x, ) is determined from the first equation of (5) and is equal to A(x, ) = —xg(?) +%x2(c’—c2);

the time derivative is primed.
The expansion of (4) satisfies this system on condition that the function u is the solution of a linear equation
of the parabolic type with an arbitrary function g(#):

du gy
——V—+(b—cy)——cu0 g@®.
ot ay dy

The constant a appears in the solution only as the product Ga; therefore, we can set a = 1. Then the resulting exact
solution of the Navier—Stokes equation will take the form

w(x,y, )=—cxy+ug(,)+0y, vxy.)=—b+cy,
p(x,y, t)=vc—%(b—cy)z—%c’yz—b’y—gx+%x2 (c’—c2)+(5bx.

Parametric Inverse-Power Expansion of the Re Number. Let us consider the series u = u; + (S(v)u2 Sub-
stituting it into (1), we find five groups of terms, which are equal in the orders of O(1), O(c), 0(6 ), O(v), and
O(vo). Expansion for the pressure p does not change the situation. Consequently,

Theoreml holds. The overdetermination minimum will be at ¢ = v, when the number of the groups is
reduced to 3: O(1), O(c), and O(c?).

Then (2) takes the form

_ _ 3 (6)

The Re number is in inverse proportion to v. Unsteady Euler equations hold true for determination of the first terms
of the expansion (u; and pi). The steady-state Navier—Stokes equation at v = 1 holds true for determination of the sec-
ond terms of the expansion (w and p3). The constraint equation is linear for both u; and wuy:

% + V) uy, + (1,V) u; + Vp, =vAu, . @)
Restricting ourselves agam to the particular example of plane flow, we superpose two solutions: 1) u; = a(t)x
and V| = —a(?)y and 2) u2 = A(t)y +B(t)y+ C(#), and v, = 0. The first solution satisfies the Euler equation; here, we
have 2p(x, y, 1) = —x (a +a ) +y (a az). The second solution satisfied the steady-state Navier—Stokes equation;
here, time acts as the parameter, and p = 2Avx.
It only remains for us to check whether the solution satisfies the constraint equations (7), which take the form
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du du d %)
—2+v1—2+au2+&=0, au2+ﬂ20.
dy X dy

Hence we find: py(x, y, 1) = —ay[%Ay2+%By + C]—x(C' +aC), A" = aA, and B = const. Consequently, the exact solu-

tion has the form

u(x,y,t)=a(t)x+v[A(t)y2+By+C(t)], vx,y,H=—a@®y, pxy1

=—%x2 (a'+a)+%y2 (a'—a)—Vay[%Ay2+%By+C]—Vx(C,+aC)+2V2xA ).

The Re-independent solution will be obtained if we set wy = p, = p; = 0 in (6). Then both sides of the
Navier—Stokes equation (1) will be equal to zero. The zero left-hand side is the Euler equation describing nonviscous-
fluid flow with an arbitrary vorticity. This arbitrariness is determined precisely from the equality of the right-hand side
to zero (Au = 0). From a vector analysis, it is known that Au = —[V®]. It follows that [Vo] = 0, i.e., ® = VQ, where
Q is the vortex potential. This means that the vorticity has a potential, i.e., a harmonic function. The practical signifi-
cance of such flow is attributable to the fact that its stability is independent of the Re number.

Let us consider two particular cases. In plane flow, we have u, = O, = O, = 0; therefore, Q = kz and ®, =

y
const. The second case is axisymmetric flow with a twist. In the cylindrical coordinate system r, 0, x, we have

1o 0Q ou, du, 10Q 10 0Q

. =— =—, Og=—7—— =——, O = =—,
Trax or’ 9 ox or rax’ Y ror ox
where I' = rug. If we have I' = 0, the vorticity mg will be equal to k/r.
We can extend the class of v-dependent solutions if we assume, instead of (6), that the flow velocity is inde-
pendent of the parameter v and the pressure is in direct proportion to V: p = p; +Vp,. For such solutions, which will

be called semidependent on Re, two equations of (1) are split into three Re-free equations: g—l;+ (@Vyu+Vp, =0, Vu

= 0, and Vp, = Au. Such a solution states the identity of the unsteady velocity field of nonviscous flow to the quasi-
steady-state velocity field of creeping flow when the pressure distribution in these fields is different. Examples of
semidependent solutions have been given in [8-13]. The semidependent solution becomes a dependent solution if
Py =0.

Time Polynomials. We find out first from which time-dependent functions ©(¢) time polynomials can be con-
structed. Let u(r, 7) be equal to uy(r) + o(H)u(r). Then Eq. (1) will contain four groups of terms having the orders of
0(c"), O(1), O(c), and 0((52).

T heorem?2 holds. The overdetermination minimum will occur if the number of these groups is reduced
to 3, which is possible in the following cases: 1) 6’ = O(1), ie., 6 = t, 2) 6’ = 0(0), i.e., 6 = exp (ki), 3) ¢’ =
0(c"), ie., 6 = 1/1.

Let us consider plane flow at ¢ = ¢ as an example. The velocity expansion will be represented in the form

u(,y, )=uy(x,y)+twu (x,y), vy )=vyxy) +tv; (x,y).
The Navier—Stokes equation will be taken in "vortex—stream function" variables:

oy do_dy do

2
=VA =—Avy. 8
o 9y ax oxay oV OTTAY ®

Expansions for the vorticity and the stream function are also binomial:
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(‘O(xs y’ t) =(DO ()C, y) +t0)] (-x’ y) bl W(xa y’ t) =‘I’0 ()C, y) +tw1 ('x’ y) .

The functions ®; and y, are determined from the steady-state Euler equation, whereas the functions ®, and
Y, are determined from the steady-state Navier—Stokes equation with an extra term

Iy 90y Yy Iy
O +—— o o o a—y=vAm0, 0y =— Ay . )

The constraint equation has the form

Iy do; Iy dwy Yy do; Iy oy
R + R PR ——

- A - Ay, . 10
dy dx dy odx dy ox Odx Jdy SVAOL, Or=m A (10

Let us consider a particular solution: ®; = 0. Then we find from (9) that w; = 0. i.e., the solution is vortex-
free, on the whole. Both terms appearing in the expansion for the stream function are determined from the Laplace
equation: Ay, = Ay, = 0. It only remams for us to determine the pressure. It is representable in the form of a poly-
nomial: p(x, y, 1) = po(x/y) +1p(x/y) +1¢ pz(x/ y). The terms p,, u;, and v, are determined from the steady-state Euler
equation. The term p, is found from the equations determining u, and v:

oy, duy Ip, v dvy, dp
M1+Moa—;)+\/0—0+—xo=0, Vi tugy aO+VO a}?+a—;=

2
ou ou
After simple computations, we obtain the sought equation for determining pq: ;APO [ayo] _ [a_xo]z

The term p; is determined from the constraint equations:

du, du du, dug  dp; v, I vy vy 9Py
Uy —=— . +up— . +vo=— > +v—=— > +g=0, oo +up—— . +vo 5 P +V1a_y+a—y=

Hence we easily obtain the sought equation for determining py:

1 dug ouy  dug duy

2Ap1— ox dx dy dy

Thus, the solution of the Navier—Stokes equation that is independent of the Reynolds number and infinitely
growing with time has been obtained as a result of a certain superposition of two vortex-free flows of an ideal fluid.
The pressure is equal to

oun B (ug P oup du, Jupy du 1
-1 0 0 -1 770 1 70 P 2 2 2
=2A — | == |+4A +1¢ | const—= (u; +viy)]|.
p [By ] [ax ] ox dx dy dy 2 (i + 1)
Coordinate Polynomials. Let us consider the Navier—Stokes equation (1) in Cartesian coordinates x, y, z
Linearization of the coordinates (one, two, or three) implies a reduction in the dimensions of the problem of 1, 2, or

3. Accordingly, three possibilities appear.
1. The solution that is linear in all coordinates has the form

Uy = XUy + YUy +2U3, Uy=XV + YV +2v3, U, =xwy+yw, +2ws,

where nine unknown coefficients u;, v;, and w; (i = 1, 2, and 3) are dependent only on the time t. Therefore, the equa-
tion of vorticity transfer 8_m+ (uV)m — (coV)u—szm = 0 is substantially simplified: two terms, the second and the

ot

fourth, disappear. Finally, we have
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a—(”—(LL)V)u:O. (11)
ot
The problem is underdetermined: with account for the continuity equation for finding nine time-dependent un-
knowns (u;, v;, w;), expression (11) yields a system of four ordinary differential equations. Therefore, five functions
can be prescribed arbitrarily.
2. Seeking the solution that is linear in one coordinate generally leads to an awkward and overdetermined sys-
tem of equations. Therefore, we restrict ourselves to the demonstration of a particular case.
In the Cartesian coordinate system x, y, z with a separated x axis, there is the symmetric (in the coordinates
y and z) solution

1 2
ug=xuy bz D +u (50, u,=v0e,50, w=wez, p=5xp O+, O +py(hz0.

To determine five unknown functions (u1, u, v, w, pg) of two variables, expression (1) yields a system of five equa-
tions. For low u; values, such flow is a superposition of the arbitrary flow in the y, z plane and the longitudinal flow
along the x axis, which is induced by the pressure gradient p;.

Similarly we construct the solution in cylindrical coordinates x, r, 0:

w,=uy (r, 0,0 +xuy (1, 1), u,=vy(r, 0,1, ug=wy(r,0,1), pzpo(r,e,t)+xp1(r,G,t)+%x2p2(r,G,t).

Such solutions yielded by the transition 3D — 2D are used in modeling flows in the shear layer and are a generaliza-
tion of the solutions at the stagnation point of both the laminar (Himentz solution and Homann solution) and turbulent
flows [14]. Analogous solutions are constructed in gas dynamics [5].

Equation (1) describing, in the cylindrical coordinate system x, r, 6, stationary axisymmetric flow of a viscous
fluid with a twist contains the exact solution

w=ur)+xu (r), u,=v(E), ug=wi(r, p:po(r)+ax+%bx2.

Equations determining ug, pg, and w are solved irrespective of the equations determining u; and v. The latter have the
form

’ 1 ’ 2 ” 1 ’
v +7v+u1=0, vup+u;j+b=v uy

In the case of the coordinate polynomial the question arises of whether its continuation to a series is possible.
N oo

Let there be necessary to continue the exact polynomial solution u = 26”_1un to the series u = ZGn_lun. Substitu-
n=1 n=1

tion of the series into (1) yields a linear homogeneous equation for determination of the (N+ 1)th term uy, ;. In the

actual problem where there are initial and/or boundary conditions they will also become linear and homogeneous.
Therefore, the term u,,; will be determined accurate to an arbitrary constant C: the polynomial is unambiguously not

continual.

If the initial equations are hyperbolic-type, we can set C = 0: no continuation is required. An example is pro-
vided Prandtl-Mayer flow. If the initial equations are elliptic, knowledge of the solution of the total problem through-
out its existence domain is required for analytical continuation of the polynomial in indices N. An example is provided
by the already mentioned flow in the vicinity of the critical point.

3. The solution that is linear in two coordinates (x and y) has the form

Uy = Xuty (2, 1) + YUy (2, 1) + 1o (2, 1), uy=xvy (2, 1) +yv (2, ) + v (2, 1) .
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Fig. 1. Body in flow with a velocity-discontinuity plane.

The term uZZ—lZl is responsible for the nonlinearities in (1), i.e., for terms of the order of O(xz, yz, xy). These terms are

equal to zero if u, is independent of x and y: u, = w(z, f). Then the pressure is represented in the form

1 2 1 2
pP=5Xpi (t)+§y Py (t) +xyp3 (1) + xpy (1) + yps5 () + pg (2, 1) .

For eight sought functions (u;, v;, w, and pg, where i = 0, 1, and 2) of two variables z and ¢, expression (1) yields a
system of eight equations: the problem is determined.
Let us consider the solution that is linear in 6:

u.=uxrt, ug=vyl,rn,)+0vxrn, u=u(xr1, (12)

pO,r,)=py(x, 1, ) +0A (x,7, ) + 0B (x, 1, 1) .

It describes flow past an axisymmetric body r = ry(x, ) or flow inside it (see Fig. 1) if the nonflow condition is ful-

filled:
aro arO aro
”(a}z e

The plane 6 = =+ is a surface source of strength 2mv(x, r, 7). Such a solution provides an example of nonseparating
flow past a bluff body. This has turned out to be possible, since the incident flow is inhomogeneous. When ry = 0
the body in flow shrinks to a singular line. Also, there can be flow between two axisymmetric bodies. From (1), we
find that u, and ug are independent of x. Therefore, representation (12) can be rewritten in the form

u,=u(r, b, ug=vy(r,)+06v 0, u.=uy,)+xu (r,1), (13)

p=py(r,)+cx+ c2x2 +0A (r,) +6,B (1, 1).

This is the transition from the solution that is linear in one coordinate (x) to a solution that is linear in two coordi-
nates (x and ). Substituting (13) into (1), we obtain four successively solvable systems of equations one of which
serves to determine up, up, v, and B, the second is used to determine vy and A, the third serves to determine pg, and
the fourth serves to determine u.

The first system will be represented as
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or

—tu——tu +t2c=——"|r vV =r—,
r

r r ’ or’ (14)

dv v v 2 0 av v| 9 (ru)
—+u—+—(u+v)+—B—— -1, +v+ru =0.
ror r T or

The second system is linear with respect to vy and A:

) aA aVO aVO IA A% a aVO VO
vvo—rar, Bt+ o + (u+v)+ =7 lar ar pak

The third system consists of one equation:

=j vi9 ra—u —lu—zv —% 8u+lv2 dr
SR 3 T L o I PR

The fourth system is the equation linear in ug

—+u—+ugy;+cy=—
T R [ or
When ¢y = 0 a solution of the type of a stationary source
L =5 (15)
r r r
is existent. From (15), we find a = %c—ZV, b=—-c, and B = _1c_2
27

Conclusions. Polynomial solutions are widely used in mathematical physics. The efficiency of their use in hy-
drodynamics for seeking the exact solutions of a Navier—Stokes equation has been shown. The general idea of the
method, which diminishes the overdetermination of the problem, is the expansion of pressure in a trinomial series, not
the representation of it in the form of a binomial that is used to describe velocity.

The condition of minimum overdetermination of the problem, which is used for selection of the binomial ve-
locity expansion and for determination of the dependence o(v) and o(f), is essentially the principle of maximum sim-
plicity (Occam’s "razor"). Also, it has been used in selecting the simplest physical model of a medium: an
incompressible Newtonian fluid.

There is no successive algorithm for obtaining the exact solutions of a Navier—Stokes equation. The method
proposed in this work should be considered as a technique for establishing which of the existing exact solutions can
form a new exact solution in polynomial form. The method answers the question the superposition of which of the
two solutions of nonlinear equations is possible. Such an approach is applicable not only to a Navier—Stokes equa-
tion but also to other nonlinear equations of mathematical physics (see, e.g., [15]). The problem of compilation of
today’s reference book of exact solutions of not only Navier—Stokes equations but boundary-layer equations as well
remains topical [16, 17].

The exact solutions of the equations, which are determined formally, disregarding the initial and boundary con-
ditions, can correspond to the problem of flow if we are able to "place" a solid body in a prescribed velocity field. This
is always possible in the case of ideal-fluid flow: any stream surface that turns out to be open can be taken as the
solid-body surface. In the case of viscous-fluid flow we can select, as the body’s surface, a surface the tangential veloc-
ity to which is equal to zero. Generally speaking, we will have the injection/suction of the fluid on such a surface.

The proposed method is a particular case of the more general method of additional constraints where certain
a priori conditions are set for the form of the sought functions. In this manner, G. I. Taylor, Campe de Ferrer, G.
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Gamel, E. Beltramie, I. S. Gromeka, and many other authors have obtained the solution in closed form (see [7]). If
the additional constraints are differential, the method is called the method of differential constraints [18].
Polynomial solutions can be considered as solutions with a generalized separation of variables [19].

NOTATION

a, b, ¢, c¢q, and c,, constants; p, pressure; p, (k = 0, ..., 6), pressure-expansion terms; Re, Reynolds number;
t, time; u, velocity vector; u; and w,, velocity-vector-expansion terms; u,, Uy and U, velocity-vector components along
the Cartesian coordinate axes x, y, and z; \, stream function; Vv, coefficient of kinematic viscosity; w, vorticity vector;
, vorticity in plane flow; ®, and o, vortex-vector components along the Cartesian axes x and y; ®, and ®g, vortex-
vector components along the axes of the cylindrical coordinate system x, r, and 0; V, gradient operator; A, Laplacian.
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